Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Lithium metal (Li0) solid‐state batteries encounter implementation challenges due to dendrite formation, side reactions, and movement of the electrode–electrolyte interface in cycling. Notably, voids and cracks formed during battery fabrication/operation are hot spots for failure. Here, a self‐healing, flowable yet solid electrolyte composed of mobile ceramic crystals embedded in a reconfigurable polymer network is reported. This electrolyte can auto‐repair voids and cracks through a two‐step self‐healing process that occurs at a fast rate of 5.6 µm h−1. A dynamical phase diagram is generated, showing the material can switch between liquid and solid forms in response to external strain rates. The flowability of the electrolyte allows it to accommodate the electrode volume change during Li0stripping. Simultaneously, the electrolyte maintains a solid form with high tensile strength (0.28 MPa), facilitating the regulation of mossy Li0deposition. The chemistries and kinetics are studied by operando synchrotron X‐ray and in situ transmission electron microscopy (TEM). Solid‐state NMR reveals a dual‐phase ion conduction pathway and rapid Li+diffusion through the stable polymer‐ceramic interphase. This designed electrolyte exhibits extended cycling life in Li0–Li0cells, reaching 12 000 h at 0.2 mA cm−2and 5000 h at 0.5 mA cm−2. Furthermore, owing to its high critical current density of 9 mA cm−2, the Li0–LiNi0.8Mn0.1Co0.1O2(NMC811) full cell demonstrates stable cycling at 5 mA cm−2for 1100 cycles, retaining 88% of its capacity, even under near‐zero stack pressure conditions.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            Abstract Oxide ceramic electrolytes (OCEs) have great potential for solid-state lithium metal (Li0) battery applications because, in theory, their high elastic modulus provides better resistance to Li0dendrite growth. However, in practice, OCEs can hardly survive critical current densities higher than 1 mA/cm2. Key issues that contribute to the breakdown of OCEs include Li0penetration promoted by grain boundaries (GBs), uncontrolled side reactions at electrode-OCE interfaces, and, equally importantly, defects evolution (e.g., void growth and crack propagation) that leads to local current concentration and mechanical failure inside and on OCEs. Here, taking advantage of a dynamically crosslinked aprotic polymer with non-covalent –CH3⋯CF3bonds, we developed a plastic ceramic electrolyte (PCE) by hybridizing the polymer framework with ionically conductive ceramics. Using in-situ synchrotron X-ray technique and Cryogenic transmission electron microscopy (Cryo-TEM), we uncover that the PCE exhibits self-healing/repairing capability through a two-step dynamic defects removal mechanism. This significantly suppresses the generation of hotspots for Li0penetration and chemomechanical degradations, resulting in durability beyond 2000 hours in Li0-Li0cells at 1 mA/cm2. Furthermore, by introducing a polyacrylate buffer layer between PCE and Li0-anode, long cycle life >3600 cycles was achieved when paired with a 4.2 V zero-strain cathode, all under near-zero stack pressure.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            Single-atom catalysts based on metal–N4 moieties and anchored on carbon supports (defined as M–N–C) are promising for oxygen reduction reaction (ORR). Among those, M–N–C catalysts with 4d and 5d transition metal (TM4d,5d) centers are much more durable and not susceptible to the undesirable Fenton reaction, especially compared with 3d transition metal based ones. However, the ORR activity of these TM4d,5d–N–C catalysts is still far from satisfactory; thus far, there are few discussions about how to accurately tune the ligand fields of single-atom TM4d,5d sites in order to improve their catalytic properties. Herein, we leverage single-atom Ru–N–C as a model system and report an S-anion coordination strategy to modulate the catalyst’s structure and ORR performance. The S anions are identified to bond with N atoms in the second coordination shell of Ru centers, which allows us to manipulate the electronic configuration of central Ru sites. The S-anion-coordinated Ru–N–C catalyst delivers not only promising ORR activity but also outstanding long-term durability, superior to those of commercial Pt/C and most of the near-term single-atom catalysts. DFT calculations reveal that the high ORR activity is attributed to the lower adsorption energy of ORR intermediates at Ru sites. Metal–air batteries using this catalyst in the cathode side also exhibit fast kinetics and excellent stability.more » « less
- 
            Carbon-supported nanocomposites are attracting particular attention as high-performance, low-cost electrocatalysts for electrochemical water splitting. These are mostly prepared by pyrolysis and hydrothermal procedures that are time-consuming (from hours to days) and typically difficult to produce a nonequilibrium phase. Herein, for the first time ever, we exploit magnetic induction heating-quenching for ultrafast production of carbon-FeNi spinel oxide nanocomposites (within seconds), which exhibit an unprecedentedly high performance towards oxygen evolution reaction (OER), with an ultralow overpotential of only +260 mV to reach the high current density of 100 mA cm -2 . Experimental and theoretical studies show that the rapid heating and quenching process (ca. 10 3 K s -1 ) impedes the Ni and Fe phase segregation and produces a Cl-rich surface, both contributing to the remarkable catalytic activity. Results from this study highlight the unique advantage of ultrafast heating/quenching in the structural engineering of functional nanocomposites to achieve high electrocatalytic performance towards important electrochemical reactions.more » « less
- 
            Selective electrochemical two-electron oxygen reduction is a promising route for renewable and on-site H2O2 generation as an alternative to the anthraquinone process. Herein, we report a high-performance nitrogen-coordinated single-atom Pd electrocatalyst, which is derived from Pd-doped zeolitic imidazolate frameworks (ZIFs) through one-step thermolysis. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) combined with X-ray absorption spectroscopy verifies atomically dispersed Pd atoms on nitrogen-doped carbon (Pd-NC). The single-atom Pd-NC catalyst exhibits excellent electrocatalytic performance for two-electron oxygen reduction to H2O2, which shows ∼95% selectivity toward H2O2 and an unprecedented onset potential of ∼0.8 V versus revisable hydrogen electrode (RHE) in 0.1 M KOH. Density functional theory (DFT) calculations demonstrate that the Pd-N4 catalytic sites thermodynamically prefer *–O bond breaking to O–O bond breaking, corresponding to a high selectivity for H2O2 production. This work provides a deep insight into the understanding of the catalytic process and design of high-performance 2e– ORR catalysts.more » « less
- 
            Abstract Designing stable Li metal and supporting solid structures (SSS) is of fundamental importance in rechargeable Li‐metal batteries. Yet, the stripping kinetics of Li metal and its mechanical effect on the supporting solids (including solid electrolyte interface) remain mysterious to date. Here, through nanoscale in situ observations of a solid‐state Li‐metal battery in an electron microscope, two distinct cavitation‐mediated Li stripping modes controlled by the ratio of the SSS thickness (t) to the Li deposit's radius (r) are discovered. A quantitative criterion is established to understand the damage tolerance of SSS on the Li‐metal stripping pathways. For mechanically unstable SSS (t/r < 0.21), the stripping proceeds via tension‐induced multisite cavitation accompanied by severe SSS buckling and necking, ultimately leading to Li “trapping” or “dead Li” formation; for mechanically stable SSS (t/r > 0.21), the Li metal undergoes nearly planar stripping from the root via single cavitation, showing negligible buckling. This work proves the existence of an electronically conductive precursor film coated on the interior of solid electrolytes that however can be mechanically damaged, and it is of potential importance to the design of delicate Li‐metal supporting structures to high‐performance solid‐state Li‐metal batteries.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
